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Breast cancer is a molecularly, biologically and clinically heterogeneous group of

disorders. Understanding this diversity is essential to improving diagnosis and

optimizing treatment. Both genetic and acquired epigenetic abnormalities

participate in cancer, but the involvement of the epigenome in breast cancer

and its contribution to the complexity of the disease are still poorly understood.

By means of DNAmethylation profiling of 248 breast tissues, we have highlighted

the existence of previously unrecognized breast cancer groups that go beyond

the currently known ‘expression subtypes’. Interestingly, we showed that DNA

methylation profiling can reflect the cell type composition of the tumour

microenvironment, and in particular a T lymphocyte infiltration of the tumours.

Further, we highlighted a set of immune genes having high prognostic value in

specific tumour categories. The immune component uncovered here by DNA

methylation profiles provides a new perspective for the importance of the

microenvironment in breast cancer, holding implications for better management

of breast cancer patients.
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INTRODUCTION

Breast cancer is a global public health issue as it is the most

frequently diagnosed malignancy in women in the Western

world and the commonest cause of cancer death in European

and American women. According to estimates in 2008,

there were 1,383,000 new cases of breast cancer diagnosed,

458,000 deaths caused by breast cancer, and more than

4.4 million women living with breast cancer worldwide (Ferlay

et al, 2010).

Human breast carcinomas have heterogeneous pathologies

and the classification of breast tumours on the basis of

histological criteria is confounded by a number of factors

(Stingl & Caldas, 2007). Gene expression profiling bymicroarray
EMBO Mol Med 3, 726–741 www.embomolmed.org
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analysis has offered a new way to classify human breast

tumours. Based on the levels of mRNA expression of specific

genes, four subtypes of breast cancers have been identified:

basal-like cancers corresponding mostly to ER-negative and

HER2-negative cancers, HER2-positive cancers characterized by

increased expression of several genes of the HER2 amplicon,

and two types of luminal cancers, low-grade luminal A and

high-grade luminal B, which are predominantly ER-positive

(Perou et al, 2000; Sorlie et al, 2001; Sotiriou et al, 2003; van ’t

Veer et al, 2002). Correlating this classification system with

the traditional method based on tumour histology has revealed

that some tumours that are classified according to their

morphology correlate with a particular gene expression

subset, whereas others do not (Sotiriou & Piccart, 2007). This

molecular approach of categorizing breast tumours represents

a paradigm shift in how we consider the origins and

categorization of breast cancer. Indeed, the heterogeneous

nature of breast cancers as well as the presence of distinct

molecular entities suggests the existence of multiple ‘cells of

origin’ (Lim et al, 2009). However, we are far from having a

complete picture of the diversity of breast tumours. Unravelling

the complexities of the heterogeneous nature of breast tumours

holds important implications for cancer diagnosis, identification

of new targets for therapy, and development of new strategies

for clinical management.

Altered DNA methylation patterns are hallmarks of human

cancers. Normally unmethylated promoters may become

densely methylated, and this results in the silencing of critical

genes such as tumour suppressor genes (Jones & Baylin, 2007).

Other sequences become instead hypomethylated in tumours,

leading to the aberrant activation of genes that are normally

repressed by DNA methylation (Feinberg, 2007). Hypermethy-

lation events have also been shown to serve as biomarkers in

human cancers, for early detection in blood and other bodily

fluids, for prognosis or prediction of response to therapy, and to

monitor cancer recurrence (Laird, 2003).

Previous studies have documented aberrant methylation

events in breast carcinogenesis and it was notably found that

specific DNA methylation patterns can be related to some of the

known ‘expression breast cancer subtypes’ (Bediaga et al, 2010;

Fang et al, 2011; Flanagan et al, 2010; Holm et al, 2010; Sun et al,

2011; Van der Auwera et al, 2010). However such patterns have

not been precisely related to novel and specific tumour traits.

Here, our goal was to explore the DNA methylation landscapes

of phenotypically heterogeneous tumours, to relate this

diversity to landscape features, and extract novel biological

and clinical meaningful information.

In the present paper, using Illumina’s Infinium methylation

platform, we have uncovered novel and precise epigenetic

portraits in breast cancer, highlighting a key contribution of the

DNA methylome to the complexity of the disease. Further, one

of the major new finding of the present study is that we showed

for the first time that DNA methylation profiles can reflect the

cell-type composition of the tumour microenvironment, and

in particular a T lymphocyte infiltration of these tumours.

Interestingly, we found immune components that are good

markers of breast cancer clinical outcome.
www.embomolmed.org EMBO Mol Med 3, 726–741
RESULTS

Breast tumours display DNA methylation profiles distinct

from those of normal breast tissues

We used the Infinium Methylation Platform to perform DNA

methylation profiling of two independent sets of frozen breast

tissue samples: a ‘main set’ of 123 samples (4 normal and

119 infiltrating ductal carcinomas, IDCs), and a ‘validation set’ of

125 samples (8 normal and 117 IDCs; Fig 1A; Tables SI, SII and

SXV of Supporting Information). The high-throughput Infinium

technique, based on hybridization of bisulphite-converted gDNA

on methylation-specific DNA oligomers, allows quantification of

methylation levels at 27,578CpG sites locatedwithin the promoter

regions (and preferentially within CpG islands) of 14,475

consensus coding sequences and well-known cancer genes

(Bibikova et al, 2009). When applied to the main set of breast

tissues, this method revealed 6309 CpGs showing differential

methylation between normal samples and IDCs (Fig S2; Table SIII

and Supplemental Materials and Methods Section of Supporting

Information). Validation of these data is depicted in Fig 1C–E (see

also Fig S3 and Table SIV of Supporting Information). In terms of

CpG location with respect to CpG islands (CGI), we found the

hypermethylated CpGs to be mostly located inside CGI, whereas

the hypomethylated CpGs were located principally outside of CGI

(Fig 1B, left part). More than a fourth of the CpG island shores

presented on the array displayed differential methylation between

normal samples and IDCs, suggesting an important role of

differential methylation of CpG island shores in cancer,

consistent with earlier work (Irizarry et al, 2009). Further,

besides the well-described differential methylation of high-CpG-

density promoters (HCPs) (Jones & Baylin, 2007), we found even

more pronounced methylation changes at intermediate- and low-

CpG-density promoters (ICPs and LCPs, respectively) (Fig 1B,

right part). Notably, ICPs (also called weak HCPs) seem to be

highly susceptible to de novoDNAmethylation (Fig 1B, right part),

in agreement with previous studies (Weber et al, 2007).

DNA methylation profiling identifies two major phenotypes of

breast cancers that are related to ER status

We next wished to establish DNA methylation profiles that

might have biological and clinical relevance. We performed an

unsupervised hierarchical cluster analysis of the 119 IDCs of the

main set, using a reduced list of CpGs showing differential

methylation between normal samples and IDCs (2985 of them;

see Supplemental Materials andMethods Section and Table SVII

of Supporting Information). There emerged two major clusters

(I and II; Fig 2A; Table SVIII of Supporting Information), with a

significant correlation between cluster membership and both

tumour grade and oestrogen receptor (ER) status (Fig 2B; Fig S4

of Supporting Information). Clusters I and II were enriched in

ER-negative and ER-positive tumours, respectively. Impor-

tantly, gene expression studies have revealed that clinical

biomarkers like ER and HER2 are just the tip of the iceberg,

reflecting whole sets of tumour features not obviously related to

the marker status (Sotiriou & Pusztai, 2009). This reality can be

captured with gene co-expression modules, i.e. comprehensive

lists of genes connected to different biological processes and
� 2011 EMBO Molecular Medicine 727
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showing highly correlated expression (Desmedt et al, 2008;

Wirapati et al, 2008). One of the most discriminating co-

expression modules is the ESR1 module (Desmedt et al, 2008).

It comprises ER-pathway genes but also genes involved in

other biological processes distinguishing ER-positive from

ER-negative tumours. We therefore next examined to what

extent ESR1 genes might be regulated at the epigenetic level.

We divided the previously described ESR1 module (Desmedt

et al, 2008) in two sub-modules, an ‘ESR1-positive’ and an

‘ESR1-negative’ module comprising, respectively, the genes

whose expression correlates positively or negatively with that

of ESR1. As shown in box plots and barcode plots derived

from Gene Set Enrichment Analysis, ESR1-positive-module

genes showed higher methylation levels in cluster I than in

cluster II (Mann–Whitney test: p< 0.001; see Fig 2C and D

and Table SIX of Supporting Information). Conversely, ESR1-

negative-module genes showed significantly higher methylation

levels in cluster II than in cluster I (Mann–Whitney test:

p< 0.001; see Fig 2C and D and Table SIX of Supporting

Information). Gene expression microarray analysis revealed a

significant anti-correlation between the DNA methylation levels

of these genes (in red) and their corresponding gene expression

levels (in blue; Fig 2C and D).

The above-results are consistent with recent work showing

differential methylation between ER-positive and ER-negative

tumours (Holm et al, 2010; Ronneberg et al, 2011; Sun et al,

2011). Further, in agreement with Sun and coworkers (Sun et al,

2011), our work shows that whole sets of genes, involved in

processes far beyond ER biology and whose expression status

distinguishes ER-positive from ER-negative tumours, are

epigenetically regulated. This strengthens the idea that ER-

positive and ER-negative breast cancers are two distinct

diseases.

DNA methylation profiling identifies new subgroups of breast

cancers

Wenext sought to refine themethylation-based taxonomy of our

tumour set. As shown in Fig 3A, the unsupervised analysis of

recurrent methylation patterns yielded six distinct entities

(clusters 1 to 6; see Fig S5 and Supplemental Materials and

Methods Section of Supporting Information for the formal

procedure for cluster definition). We then wished to relate these

methylation clusters with the known breast cancer ‘expression

subtypes’. Currently, on the basis of gene expression profiles,

four subtypes are distinguished (see also Introduction): basal-
Figure 1. High-throughput DNA methylation profiling in human frozen breas

A. Experimental outline for DNA methylation analysis of 248 breast tissues w

B. Pie chart depicting the number of CpGs differentiallymethylated between bre

CGI (as defined in Bock et al, 2007) as well as CpG island shores (as defined in

et al, 2007; see also Table SIII of Supporting Information).

C. Methylation frequencies of representative CpGs examined by bead array an

Information for a more detailes table with references).

D, E. Validation of the bead array method by conventional Bisulphite Genomic S

normal (N1) and 3 tumour samples (BCs). Red arrows indicate the location

surrounding CpGs (see Fig S3 of Supporting Information for further examples)

a significant positive correlation (Spearman’s rho¼0.82; p<0.001) betwe

www.embomolmed.org EMBO Mol Med 3, 726–741
like, HER2-positive, luminal A and luminal B breast cancers

(Sotiriou & Piccart, 2007). IHC and gene expression profiling

(Fig 3A) revealed a significant preponderance of HER2-positive

tumours in cluster 2, basal-like tumours in cluster 3, and luminal

A tumours in cluster 6. Interestingly, no single ‘expression

subtype’ appeared to dominate in methylation clusters 1, 4 and

5: cluster 1 contained HER2, basal-like as well as luminal B

tumours; cluster 4 appeared to be a mix of HER2 and luminal B

tumours; and cluster 5 contained both luminal A and B tumours

(Fig 3A; see also Table SX and Fig S6 of Supporting Information).

Hence, this importantly demonstrates the potential of DNA

methylation profiling to refine breast cancer classification.

To validate our six methylation clusters, we applied the

Infinium methylation assay to an independent validation set of

117 breast tumours and used the efficient nearest centroid

classification method (Lusa et al, 2007; Sorlie et al, 2003) to

assign, on the basis of DNAmethylation profile similarities, each

new sample to one of the six clusters (see Supplemental

Materials and Methods Section in Supporting Information).

Focusing first on the main set, we established an 86 CpG-

classifier that consists of a list of 86 key CpGs, this being the

minimum number of CpGs required to retrieve the six

unsupervised-analysis-based clusters (Fig 3B; Figs S7 and S8,

Tables SXI, SXII, SXIII and SXIV, Supplemental Materials and

Methods Section of Supporting Information). From this list of 86

CpGs, we calculated 6 centroids (i.e. profiles consisting of the

median methylation value for each of the 86 CpGs) for each of

the 6 methylation groups. Then, by computing the Spearman

correlation of each tumour of the validation set with each

calculated centroid, we classified each new sample into one

of the 6 methylation clusters (Fig S9 and Table SXVI of

Supporting Information). Remarkably, essentially all tumours of

the validation set showed a strong correlation with one of the

six methylation groups (Fig 3C; Fig S9 and Table SXVI of

Supporting Information). Furthermore, IHC performed on the

independent validation set showed a very similar ‘expression

subtype composition’ for each of the 6 groups as in the case of

the main set (Fig 3C; Table SXVII and Fig S10 of Supporting

Information). It is noteworthy that the 86 CpG-classifier

contained CpGs related to genes well-known to be implicated

in breast cancer, such as: the oestrogen-inducible gene (TFF1),

cyclin D1 (CCND1), secreted frizzled-related protein 2 (SFRP2),

caspase 1 (CASP1), POU class 4 homeobox 1 (POU4F1) and

interleukin 1, alpha and beta (IL1A and IL1B) (Table 1; Table

SXIII of Supporting Information). Note also that this classifier
t tissues.

ith the Infinium Methylation Assay.

ast tumour and normal samples of themain set, in terms of: (i) CpG location vs.

Irizarry et al, 2009); (ii) CpG location vs. promoter classes (as defined inWeber

d their correlation with previously reported data (see Table SIV of Supporting

equencing (BGS). Panel (D) shows an exemplative analysed locus, CDK3, in 1

of the CpG investigated by the bead array, which seems representative of the

. Data representation was done according to (Bock et al, 2005). Panel (E) shows

en the Infinium Methylation and BGS data.
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Figure 2. DNA methylation profiling identifies two main breast tumour categories with different ER status.

A. A dendrogram (top) and a heatmap (bottom) of the 119 breast cancer (BC) specimens of the main set obtained by performing a hierarchical cluster analysis

show two main clusters, I and II.

B. ER status is a main discriminator of the two broad tumour groups (see also Fig S4 of Supporting Information).

C. Box plots of ESR1 module scores show that the genes of the ESR1-positive module (left part) showed higher methylation (red) and lower expression (blue) in

cluster I than in cluster II. The opposite was observed for the ESR1-negativemodule (right part). The ESR1module has been previously described (Desmedt et al,

2008).

D. Barcode plots of the ESR1 module (provided by GSEA analysis) showing an anti-correlation of DNA methylation and expression data (see also Table SIX and

Supplemental Materials and Methods of Supporting Information). Red and blue bars designate the positions of ESR1 module genes in methylation and

expression rankings, respectively. Dotted lines depict the zero.

~

Table 1. The 86 key CpGs that characterize the 6 methylation-based

clusters

Illumina ID Related gene CpG Islanda Promoterb

cg27610561 SLC2A10 Shore HCP

cg21570818 FUT5 False ICP

cg08887581 C1orf64 False ICP

cg14023451 GPLD1 False ICP

cg05215575 FLJ25410 False ICP

cg11037787 PLA2G2A False ICP

cg02671171 RPH3AL Shore ICP

cg00294382 IL23A False ICP

cg02643667 TFF1 True ICP

cg21137417 SPP2 False LCP

cg05089968 MGC35308 Shore HCP

cg19456540 SIX6 True HCP

cg14430151 FLJ35725 False LCP

cg04457051 SCOC False ICP

cg08097882 POU4F1 True HCP

cg25942450 TLX3 True HCP

cg08658594 TAS2R13 False LCP

cg02170525 CD8A Shore HCP

cg02880679 MBTD1 False LCP

cg13271951 FAM57B Shore ICP

cg08285151 HDAC9 False LCP

cg05436658 PRKCB1 True HCP

cg02148642 RGPD5 False ICP

cg26189983 TNFRSF1B True HCP

cg10707565 CUBN False LCP

cg23801057 P2RX7 Shore ICP

cg23092823 PODN True HCP

cg03503295 DNAH5 False LCP

cg09448880 PGLYRP3 False ICP

cg22194129 CLEC4C False ICP

cg17108819 CD8A True HCP

cg01017147 DNM3 True HCP

cg18752854 TNS1 False ICP

cg19589427 TNFSF18 False LCP

cg21475402 BCAN True HCP

cg10300684 FOXG1B True HCP

cg17095936 TBX19 False ICP

cg01335367 C12orf34 True ICP

cg24525573 C1orf64 False ICP

cg15604467 POU4F1 True HCP

cg05181279 RIG False ICP

cg19018097 FLJ30934 True HCP

cg06119575 TAL2 False ICP

cg14686321 FLJ31951 Shore HCP

cg10541755 EIF5A2 True HCP

cg10334928 STON2 False LCP

cg11354906 SFRP2 True

Illumina ID Related gene CpG Islanda Promoterb

cg06436504 DOC1 False ICP

cg17619823 ADRB3 True ICP

cg27196745 PTPRO True HCP

cg02399455 SRI False ICP

cg11802013 CCND1 True

cg02595219 KCNE3 True ICP

cg00596686 STS False ICP

cg27491887 KCNQ1 True

cg05158615 NPY True HCP

cg20980592 MEP1A False LCP

cg13696012 BPIL1 Shore ICP

cg00953256 CCND1 True

cg07426960 CCND1 True

cg01109219 RASGRP3 False LCP

cg10968815 BPIL1 Shore ICP

cg15046693 CEBPG Shore HCP

cg23391785 DNM3 True HCP

cg00051623 CASP1 False LCP

cg13755070 FLI1 True HCP

cg02657438 STON2 False LCP

cg13144783 CCR1 False ICP

cg18129786 ZNF445 Shore HCP

cg02723533 CCND1 True

cg10964421 TNFRSF10D True

cg24199834 POU4F2 True HCP

cg14003512 PLGLB2 False ICP

cg23642747 INA True HCP

cg01424107 CDX2 True HCP

cg02100848 C3orf32 False ICP

cg05056120 EBF True ICP

cg00839584 IL1A False LCP

cg02681442 FOXG1B Shore HCP

cg06653796 LIME1 True ICP

cg21296230 GREM1 True HCP

cg11547724 HPX False ICP

cg17240454 SPDEF False ICP

cg08047907 C1orf114 True ICP

cg17667972 KRT4 False ICP

cg07935264 IL1B False LCP

aThe CpG Island column indicates whether the CpG is located inside a CGI

(true), is a CpG island shore (shore), or is neither in a CGI nor a CpG island shore

(false).
bPromoter column referred to the class of the promoter in which the CpG is

located (HCP, high-CpG-density promoter; ICP, intermediate-CpG-density

promoter; LCP, low-CpG-density promoter). See also Table SXIII of Supporting

Information for further details.

Table 1. (Continued)
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contained majorly CpGs located in ICPs as well as LCPs (Fig S11

of Supporting Information). Taken together, these results

reveal the existence of breast cancer groups that go beyond

the currently known ‘expression subtypes’ and suggest that

methylation profiling may provide a basis for improving tumour

taxonomy.

Methylation patterns can be linked to specific stem cell/

progenitor populations

Breast cancer research is currently undergoing a paradigm shift

from tumour classification to an effort to trace distinct groups of

breast cancers back to specific stem cell/progenitor populations

likely to reflect their cellular origins (Stingl & Caldas, 2007;

Visvader, 2009). In that respect, recent work has shed light on

normal humanmammary epithelial cell hierarchy (Prat & Perou,

2009), and gene expression profiling has shown that mammary

stem cells (MaSC), luminal progenitors, and mature luminal

cells have distinct gene expression signatures (Lim et al, 2009).

To see to what extent the methylation patterns distinguished

here might reflect the cellular origins of the studied tumours, we

computed overall scores of these three gene expression

signatures for each of the six methylation clusters described

above; this being an effective way to measure concordance

between sample profiles and subpopulation signature profiles.

We observed no obvious concordance of any of the clusters with

the MaSC signature (Fig 4A). Most strikingly, the score for the

luminal progenitor signature (Fig 4B) was highest in cluster 3,

rich in basal-like tumours (p¼ 0.001 vs. clusters 2 and 4;

p< 0.001 vs. other clusters). It was low in clusters 1, 4, 5 and

also 6, the cluster rich in luminal A-type tumours. Plots obtained

for the mature luminal signature (Fig 4C) were almost a mirror

image of the previous one: cluster 3 showed the lowest score,

and clusters 1, 4, 5 and 6 the highest (p< 0.001 for each of these

clusters vs. clusters 2 and 3, except for cluster 4 vs. cluster 2

where p¼ 0.019). Cluster 2, rich in HER2-overexpressing

tumours, showed no clear association with any normal

epithelial cell population. Remarkably, the anti-correlation

between gene expression and DNA methylation increased from

the top to the bottom of the mammary hierarchy (Fig 4, compare

panels A, B and C with panels D, E and F, respectively),

Spearman’s coefficient being �0.435 (p< 0.0001) for the MaSC

signature, �0.568 (p< 0.0001) for the luminal progenitor

signature, and �0.726 (p< 0.0001) for the mature luminal cell

signature. Thus, these observations suggest that themethylation

patterns we have identified might be related to the cell type of

origin of the tumours concerned (see Fig S12 of Supporting

Information).
Figure 3. Complexity and heterogeneity of breast cancers as revealed by DN

A. DNA methylation profiling of the main set identifies six groups of tumours, t

composition’ and clinical characteristics (see also Fig S6 and Table SX of Sup

B. Comparison of themethylation group assigned to each tumour of themain set b

nearest centroid classification method (Lusa et al, 2007; Sorlie et al, 2003; se

C. Classification of each tumour of the validation set into one of the six methylati

Supporting Information). Note that the 6 groups obtained for the validation s

characteristics as the groups obtained for the main set (see also Fig S10 and

www.embomolmed.org EMBO Mol Med 3, 726–741
DNA methylation profiles reflect the cell-type composition of

the tumour microenvironment

Next, to further probe the biological significance of our six

clusters, we quantified the number of differentially methylated

targets (as compared to normal samples) characterizing each of

the above clusters in the main set (see Supplemental Materials

andMethods Section of Supporting Information). The number of

targets was found to vary greatly between clusters, being lowest

for cluster 3 (276 CpGs) and highest for cluster 4 (1,378 CpGs;

Fig 5A; Table SXVIII of Supporting Information). We then

performed a gene ontology (GO) analysis focusing on the genes

in each cluster showing both differential methylation (as

compared to normal samples) and a significant anti-correlation

between methylation and expression (Tables SXIX, SXX and

SXXI of Supporting Information). This revealed differential

methylation of several genes involved in immunity, with

different clusters showing distinct ‘epigenetic immune profiles’

(Fig 5B). In particular, tumours of clusters 2 (HER2-enriched)

and 3 (basal-like-enriched) showed hypomethylation of several

immune genes (Fig 5B). Because in this study we considered

whole tumour tissues, our samples were constituted principally

of epithelial cells, but also of cells from the surrounding stroma,

including immune cells. Hence, we hypothesized that the

observed hypomethylation of immune genes in clusters 2 and 3

indicated an infiltration of these tumours by immune cells, such

as lymphocytes. This hypothesis proved correct. As shown in

Fig 5C, we performed histological analysis, as previously

described (Denkert et al, 2010), to determine stromal and

intratumoural lymphocyte infiltration. Remarkably, the

tumours of clusters 2 and 3 were much more infiltrated by

lymphocytes than those of the other clusters (Fig 5D).

Furthermore, the methylation status of most of the immune

genes highlighted by the GO analysis correlated inversely with

the level of lymphocyte infiltration (Fig 5E; Table SXXII of

Supporting Information). In addition, DNA methylation profil-

ing of normal and breast cancer epithelial cell lines as well as ex

vivo T and B lymphocytes and lymphoid cell lines revealed that a

high number of the studied immune genes were highly

methylated in breast cancer and normal epithelial cell lines

but barely methylated in lymphocytes (Fig 5F; Fig S13 of

Supporting Information). These data strongly suggest that

hypomethylation of immune genes detected in cluster-2 and -3

tumours reflects the cell-type composition of the tumour

microenvironment, and in particular a lymphocyte infiltration

of these tumours. A closer look at these genes revealed, in

cluster 2, hypomethylation of genes involved in T cell biology,

e.g. genes encoding T cell markers, like the CD6 antigen and T
A methylation: a meaningful basis for refining breast tumour taxonomy.

ermed clusters 1–6, displaying differences in terms of ‘expression subtype

porting Information).

y the unsupervised cluster analysis and the 86 CpG-classifier established by the

e also Fig S8 and Table SXIV of Supporting Information).

on groups by means of the 86 CpG-classifier (see also Fig S9 and Table SXVI of

et presented the same ‘expression subtype composition’ and clinical

Table SXVII of Supporting Information).
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Figure 4. The identifiedmethylation patternsmight be related to the cell type of origin of the tumours concerned. Comparison of gene expression signatures

of several normal mammary epithelial subpopulations (Lim et al, 2009) with gene expression and DNA methylation profiles of our six DNA methylation-based

groups of patients in the main set.

A-C. Box plots of MaSC (A), luminal progenitor (B) and luminal mature (C) signature scores for each of the six methylation breast cancer groups, based on their

gene expression profiles. Cluster 3 displayed the highest luminal progenitor signature score (p¼0.001 vs. clusters 2 and 4; p< 0.001 vs. other clusters;

(B)), whereas the luminal mature signature score was higher for clusters 1, 4, 5 and 6 (p<0.001 for each of these clusters vs. clusters 2 and 3, except for

cluster 4 vs. cluster 2 where p¼ 0.019; (C)). Cluster 2 was not associated with any of the three signatures.
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cell activation markers, like the LCK tyrosine kinase or the

PTPN22 tyrosine phosphatase involved in T cell receptor

signalling (Salmond et al, 2009; Wu et al, 2006) (Table SXXI

of Supporting Information). These data might indicate that

cluster-2 tumours, more readily than those of the other clusters,

induce an antitumour T-cell response, with mobilization of T

lymphocytes in the neoplastic environment.

Epigenetically regulated immune components are good

markers of breast cancer clinical outcome

We then sought to assess the clinical relevance of the above-

mentioned epigenetic changes in breast carcinogenesis. To

this end, we performed an univariate survival analysis of all

6,309 CpGs identified in this study (i.e. as being differentially

methylated between normal breast samples and tumours). As

suspected, our main set appeared too small to allow inter-

pretable results (Table SXXIII of Supporting Information). We

therefore turned to the more abundant gene expression data

publicly available and selected only untreated patients in order

to evaluate the true prognostic value of biomarkers (between

730 and 952 samples, depending on the gene considered;

Table SXXIV of Supporting Information). We selected 55 genes

(see Supplemental Materials andMethods Section of Supporting

Information) showing a strong anti-correlation between their

methylation and expression status, and subjected them to a

univariate Cox regression analysis. Strikingly, no less than 32 of

these genes (58%) emerged as significant prognostic markers

(Table SXXV of Supporting Information). Furthermore, 13 of the

32 genes are involved in immunity and 9, particularly, in T

lymphocyte biology (CD3D, CD3G, CD6, LCK, LAX1, SIT1,

RHOH, UBASH3A and ICOS; Fig 6A). To our knowledge several

of them, like for example LAX1, SIT1, or UBASH3A, have never

been highlighted before as survival markers in breast cancer.

Consistently with the data presented in Fig 5D–F, low

methylation of the above genes correlated with high lymphocyte

infiltration (except for RHOH and BST2, so these were not

subsequently considered; Fig 6B; Table SXXVI of Supporting

Information). When looking at the expression levels of these

genes, the opposite was found, that is, high gene expression

correlated with high lymphocyte infiltration (Fig 6B; Table

SXXVII of Supporting Information). This anti-correlation

between the methylation and expression status of the immune

geneswas also found in breast epithelial cell lines aswell as in ex

vivo lymphocytes and T lymphoid cell lines, as determined by

DNAmethylation and gene expression profiling (Fig 6C). This is

in keeping with the strong anti-correlation observed between

methylation and expression status of these genes in the whole

tumour samples (Table SXIX of Supporting Information).

Furthermore, some of these genes (CD3D, CD3G, ICOS and

UBASH3A) appeared highly methylated in ex vivo B lympho-

cytes and not in T lymphocytes samples (Fig 6C), again

indicating that the observed lymphocyte infiltration mostly

involves T lymphocytes, as suggested in Fig 6A.

We next focused on the association between the above

11 immune genes and clinical outcome. High expression of all

of them was associated with a better outcome (Fig 6D), and

interestingly, a multivariate analysis revealed that all of them,
www.embomolmed.org EMBO Mol Med 3, 726–741
except CD6, seem to have an independent prognostic value to

currently used clinical indicators (Fig 6E; Table SXXVIII of

Supporting Information). A detailed survival analysis of the

11 immune genes revealed a subtype-specific prognostic value

of these genes. Most of them showed high prognostic value in

HER2-overexpressing and luminal B tumours, but none of

them had an impact in luminal A tumours; only a few seemed

to have prognostic value in basal-like tumours (Fig 6F; Table

SXXIX of Supporting Information). Overall, our results suggest

that the presence of these markers, associated with a better

prognosis, might reflect an antitumour T-cell response, specific

for certain tumour categories. In addition, these data highlight

the importance of DNA methylation analyses in revealing

components of breast cancers, like the immune component

described here, that were not that apparent on the basis of

classical gene expression analyses (the latter having revealed

principally the cell proliferation component as the major

prognostic marker for breast cancer (Sotiriou & Pusztai,

2009)).
DISCUSSION

In this report, on the basis of the epigenetic portraits we have

drawn here, several novel findings emerge for breast cancer

research and management.

Recent work have identified aberrant methylation events in

breast tumours, showing that specific DNA methylation

patterns can be related to some of the known ‘expression

breast cancer subtypes’ (Bediaga et al, 2010; Holm et al, 2010;

Sun et al, 2011; Van der Auwera et al, 2010). For example,

Holm et al analysed 807 cancer-related genes to investigate

whether the known ‘expression subtypes’ also display DNA

methylation profiles (Holm et al, 2010). They found that three

of the previously described ‘expression subtypes’, basal-like,

luminal A and B, harbour different methylation profiles. Of

particular interest, another recent study showed that on the

basis of their DNAmethylation profiles, luminal A tumours can

be separated into two distinct entities (Ronneberg et al, 2011),

suggesting that despite the strong concordance existing

between breast cancer groups determined from gene expres-

sion and DNA methylation profiling, DNA methylation

analysis provides additional information. Although it will be

necessary to perform DNAmethylation profiling of many more

breast tumours, our work supports this hypothesis and

demonstrates the existence of previously unrecognized breast

cancer groups that go beyond the currently known ‘expression

subtypes’. In other words, we have highlighted that DNA

methylation profiling can provide a basis for refining tumour

taxonomy.

Portraying the epigenetic facets of mammary tumours might

also be relevant for understanding the cellular origins of the

various subsets of breast cancers (Stingl & Caldas, 2007;

Visvader, 2009). Noteworthy in this respect is the high luminal

progenitor signature score observed for cluster 3, rich in basal-

like tumours. We propose that based on their DNA methylation

profiles, distinct groups of breast cancers can be traced back to
� 2011 EMBO Molecular Medicine 735
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specific progenitor populations, probably reflecting their cellular

origins and thereby the biological heterogeneity of breast cancers.

Thus, our discovery might potentially link cancer epigenetics to

the epigenetics of normal and neoplastic stem/precursor cells.

Besides providing a fundamental ground towards an

improved taxonomy of breast cancers, DNA methylation

profiling uncovered the identification of clinically relevant

markers and thus could contribute to cancer screening and

prognosis. Beyond its technical advantages over RNA expres-

sion profiling (e.g. DNA is more stable, easily stored and could

be collected from any quality of biopsy) (Laird, 2003), we show

that it can reveal strong survival markers, that single use of gene

expression profiling has not highlighted. An example is the

heretofore-undervalued epigenetically regulated immune com-

ponent discovered here, notably T-cell markers which are

associated with a better clinical outcome in specific tumour

categories. Another example is related to our findings that the

twomajor phenotypes of breast cancers determined by ER status

are widely epigenetically controlled, offering the prospect of a

novel approach to treating ER-positive tumours. Indeed, being

reversible, epigenetic changes are ideal candidate targets for

drug development. Several inhibitors of enzymes controlling

epigenetic modifications are already being clinically tested,

alone or in combination with endocrine therapy, with a view to

reversing endocrine resistance due to ER non-expression

(Pathiraja et al, 2010). The present results suggest that such

agents might be used, instead, to stimulate genes whose lack of

expression in ER-positive/HER2-negative tumours (represent-

ing 50–60% of all breast cancers) might contribute to the poor

response of these tumours to chemotherapy (Liedtke et al,

2009).

In summary, we have established an 86 CpG-classifier that

may provide a meaningful basis for refining breast tumour

taxonomy. Further, the identified methylation patterns might be

related to the cell type of origin of the tumours concerned. One of

the major novel findings of the current work is that DNA

methylation profiles can reflect the cell-type composition of the

tumour microenvironment, and in particular a T lymphocyte

infiltration of these tumours. What’s more, immune genes are

shown to be good markers of breast cancer clinical outcome.

The immune component we have uncovered opens new

avenues to better understand the emerging intricate relationship

existing between the tumour cells and the surrounding stroma,

holding implications for breast cancer prevention, diagnosis and

treatment.
Figure 5. DNA methylation profiles reflect the cell-type composition of the t

A. Histograms showing the heterogeneity of breast tumours in terms of the num

B. Differential methylation of genes involved in immunity as revealed by GO an

C. Histological patterns of breast tumours displaying no lymphocyte infiltration (

look at the intratumoural infiltration presented in panel 2. Black arrows indi

intratumoural lymphocytes, respectively.

D. Box plots depicting the higher lymphocyte infiltration in main set tumours belo

E. Box plots illustrating the inverse correlation between LCK and ITGAL methylat

Table SXXII of Supporting Information).

F. Methylation status, assessed by DNA methylation profiling, of immune genes

lymphocytes and lymphoid cell lines (see also Fig S13 of Supporting Informa
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MATERIALS AND METHODS

Breast tissue samples

The main set is constituted of 119 archival frozen breast cancer

samples from patients diagnosed at the Jules Bordet Institute between

1995 and 2003. These samples were selected according to the

following criteria: (i) sufficient presence of invasive cells as defined by

pathologist (see Supporting Information); (ii) >2mg yield of high

quality DNA available; (iii) balanced distribution of the four main

‘breast cancer expression subtypes’ determined by IHC; and

(iv) balanced distribution of patients with and without relapses

within each subtype. Four samples of normal breast tissues with

sufficient high-quality DNA were selected as well for this main series.

The validation set is constituted of 117 frozen breast cancer samples

from patients diagnosed at the Jules Bordet Institute between 2004

and 2009. Of note, the validation set was slightly enriched in basal-

like tumours as compared to the main set. Eight normal breast tissue

samples were selected as well.

For complete patient data, see Tables SI, SII and SXV of Supporting

Information. The Ethics committee of the Jules Bordet Institute

approved the present research project.

DNA methylation profiling

Genomic DNA from the clinical frozen samples was extracted from

twenty 10-mm sections using the Qiagen-DNeasy Blood &Tissue Kit

according to the supplier’s instructions (Qiagen, Hilden, Germany). This

included a proteinase K digestion at 558C overnight. For breast

epithelial cell lines and lymphocyte samples, genomic DNA was

extracted with the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany)

including the recommended proteinase K and RNase A digestions. DNA

was quantitated with the NanoDrop1 ND-1000 UV–Vis Spectro-

photometer (NanoDrop Technologies, Wilmington, DE, USA).

Site-specific CpG methylation was analysed using Infinium1 Human-

Methylation27 bead-array-based technique. This array was developed to

assay 27,578 CpG sites selected from more than 14,000 genes. Genomic

DNA (1mg) was treated with sodium bisulphite using the Zymo EZ DNA

Methylation KitTM (Zymo Research, Orange, USA) according to the

manufacturer’s procedure, with the alternative incubation conditions

recommended when using the Illumina Infinium1 Methylation Assay.

The methylation assay was performed from 4ml converted gDNA at

50ng/ml according to the Infinium1 Methylation Assay Manual protocol.

The quality of bead array data was checked with the GenomeStudioTM

Methylation Module software. All samples passed this quality control.

Methylation raw data are available online (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?token=bvonpyugyawqqto&acc=GSE20713).
umour microenvironment.

ber of CpGs differentially methylated compared to normal samples.

alysis, with high hypomethylation content in clusters 2 and 3.

1) or both stromal and intratumoural infiltration (2). Panel 3 provides a closer

cate epithelial cells, whereas green and blue arrows indicate stromal and

nging to clusters 2 and 3 as compared to tumours belonging to other clusters.

ion and lymphocyte infiltration (Jonckheere–Terpstra test for trends; see also

highlighted by GO analysis in breast epithelial cell lines as well as in ex vivo

tion).
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The paper explained

PROBLEM:

Breast cancer is a very heterogeneous disease at histological as

well as molecular levels. Despite considerable efforts by legions

of clinicians and biologists to classify breast cancers into

different groups, patients with the same ‘profile’ of breast cancer

can respond differently to chemotherapies or targeted therapies

and have completely different clinical outcomes. In order to

improve diagnosis and optimize treatment, it is of particular

importance to understand the heterogeneity of breast cancers. As

it is increasingly clear that epigenetic abnormalities—and in

particular aberrant DNA methylation—are involved in carcino-

genesis, devoting more energy to explore this epigenetic

component should bring new insights to better explain breast

cancer diversity. Towards this end, we explored the DNA

methylation landscapes of phenotypically heterogeneous breast

tumours to extract novel biological and clinical meaningful

information.

RESULTS:

From DNA methylation profiling of 248 primary breast tumours,

several key findings emerged. On the basis of their DNA

methylation profiles, breast tumours can be divided into several

groups that go beyond the currently known breast tumour

‘expression’ subtypes, suggesting a possibility to refine the

classification. Interestingly, our study showed that DNA

methylation profiles of breast tumours can reflect the cell type

composition of tumour microenvironment, at least a T

lymphocyte infiltration. Further, we found that several immune

genes are as good prognostic markers of breast cancer clinical

outcome in specific tumour categories.

IMPACT:

Revealing a novel level of breast tumour heterogeneity, our study

offers a perspective to refine the current breast cancer

classification. In addition, we showed that DNA methylation

profiling of whole breast tumours is able to assess both the

epithelial and stromal components of tumours. Therefore, such

approach could be useful to increase our understanding of the

contribution of the tumour microenvironment in breast cancer.

Overall, the epigenetic portraits we describe should help to

improve breast cancer patient management.

~

Gene expression profiling

For tumours of the main set as well as cell lines and ex vivo samples,

RNA was isolated by the Trizol method (Invitrogen) or the Tripure

method (Roche) according to manufacturers’ instructions and purified

on RNeasy mini-columns (Qiagen). The quality of the RNA obtained from

each tumour sample was assessed on the basis of the RNA profile

generated by the Bioanalyzer (Agilent Inc.). Total RNA (100ng) was first

reverse-transcribed into double-stranded cDNA. This cDNA was tran-

scribed in vitro. After purification of the aRNA, 12.5mg were fragmented

and labelled prior to hybridization to the Affymetrix HG133 Plus 2.0

GeneChip. Among the clinical samples of the main set, 30 initially

profiled for DNA methylation were not profiled for gene expression

because of low tumour-cell content (<70% tumour cells, n¼11), no
Figure 6. Epigenetically regulated immune components are good markers of

A. Pie chart depicting the high proportion of immune genes, and in particular of g

prognostic markers (FDR< 0.1) (see Table SXXV of Supporting Information).

B. Box plots illustrating the correlation of methylation (in red) and expression (in b

Terpstra test for trends; see also Tables SXXVI and SXXVII of Supporting Infor

C. Anti-correlation between the methylation and expression status of the 11 pr

lymphocytes and lymphoid cell lines, as determined by DNA methylation and

D. High expression of 11 immune genes is associated with a better clinical. Forest p

(bars) of the relapse-free survival analysis. A negative hazard ratio reveals tha

outcome, and conversely.

E. Immune markers appear significant in a multivariate analysis with all the cla

examples (see also Table SXXVIII of Supporting Information for the complete

F. Subtype-specific prognostic value of immune markers for breast cancer. Exem

CD3D genes in each known ‘expression subtype’ (see also Table SXXIX of Suppo

each subtype).

www.embomolmed.org EMBO Mol Med 3, 726–741
tumour left at all in the samples (n¼4), low-quality RNA (n¼13), or low

RNA quantity (n¼2). In addition, the CD4þ lymphocyte clone R12C9

was not profiled for gene expression because of low RNA quantity. The

quality of the microarray data was checked using the ‘yaqcaffy’ package

of the R statistical software (http://www.r-project.org/). On the basis of

the results, two samples were excluded from further analysis. Gene

expression raw data are available online (http://www.ncbi. nlm.nih.gov/

geo/query/acc.cgi?token=bvonpyugyawqqto&acc= GSE20713).
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